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the algorithm above with Simpson’s rule. Simpson'’s rule naturally integrates over
an interval2h, so we easily get the function values at the even mesh points. For the
odd mesh points, we could try appending one panel of trapezoidal rule. But to which
end of the integration should we append it? We could do one step of trapezoidal rule
followed by all Simpson’s rule, or Simpson'’s rule with one step of trapezoidal rule
at the end. Surprisingly, the former scheme is unstable, while the latter is fine!

A simple approach that can be used with the trapezoidal method given abové

is Richardson extrapolation: Compute the solution with stepsiaedh/2. Then, g
assuming the error scales witif, compute z
4f(h)2) — f(h 3

fo = /2= 1) 1825 <

L

This procedure can be repeated as with Romberg integration.
The general consensus is that the best of the higher order methods is th
block-by-block method (seell]). Another important topic is the use of variable
stepsize methods, which are much more efficient if there are sharp featutesrin
f. Variable stepsize methods are quite a bit more complicated than their counterpar
for differential equations; we refer you to the literatite] for a discussion.
You should also be on the lookout for singularities in the integrand. If you find
them, then look t18.3 for additional ideas.

@008

CITED REFERENCES AND FURTHER READING:

Linz, P. 1985, Analytical and Numerical Methods for Volterra Equations (Philadelphia: S.I.A.M.).
(1]

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, U.K.: Cambridge University Press). [2]

18.3 Integral Equations with Singular Kernels

Many integral equations have singularities in either the kernel or the solution or both.%
A simple quadrature method will show poor convergence wunthf such singularities are
ignored. There is sometimes art in how singularities are best handled.

We start with a few straightforward suggestions:

1. Integrable singularities can often be removed by a change of variable. For example, the
singular behavioi (¢, s) ~ s'/% or s~'/? nears = 0 can be removed by the transformation

z = s/2. Note that we are assuming that the singular behavior is confinéd, twhereas
the quadrature actually involves the prodictt, s) f(s), and it is this product that must be
“fixed.” ldeally, you must deduce the singular nature of the product before you try a numericalg
solution, and take the appropriate action. Commonly, however, a singular kernehatoes
produce a singular solutiofi(¢). (The highly singular kernek (¢, s) = 6(t — s) is simply
the identity operator, for example.)

2. If K(t,s) can be factored as(s)K (¢, s), wherew(s) is singular andK (¢, s) is
smooth, then a Gaussian quadrature based (@ as a weight function will work well. Even
if the factorization is only approximate, the convergence is often improved dramatically. All
you have to do is replaggauleg in the routinefred2 by another quadrature routine. Section
4.5 explained how to construct such quadratures; or you can find tabulated abscissas and
weights in the standard referend&g]. You must of course supplK instead ofk.
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18.3 Integral Equations with Singular Kernels 789

This method is a special case of ireduct Nystrom method [3,4], where one factors out
a singular termp(¢, s) depending on bothands from K and constructs suitable weights for
its Gaussian quadrature. The calculations in the general case are quite cumbersome, because
the weights depend on the chosgn} as well as the form op(¢, s).

We prefer to implement the product Nystrom method on a uniform grid, with a quadrature
scheme that generalizes the extended Simpson’s 3/8 rule (equation 4.1.5) to arbitrary weight
functions. We discuss this in the subsections below.

3. Special quadrature formulas are also useful when the kernel is not strictly singularg
but is “almost” so. One example is when the kernel is concentrated rearon a scale much =
smaller than the scale on which the solutift) varies. In that case, a quadrature formula %
can be based on locally approximatifigs) by a polynomial or spline, while calculating the 5
first few moments of the kernelK (¢, s) at the tabulation pointg;. In such a scheme the 3
narrow width of the kernel becomes an asset, rather than a liability: The quadrature becomes

exact as the width of the kernel goes to zero.

4. An infinite range of integration is also a form of singularity. Truncating the range at a
large finite value should be used only as a last resort. If the kernel goes rapidly to zero, the
a Gauss-Laguerreu] ~ exp(—as)] or Gauss-Hermited ~ exp(—s*)] quadrature should
work well. Long-tailed functions often succumb to the transformation

2c
=@ (18.3.3
which maps0 < s < coto 1 > z > —1 so that Gauss-Legendre integration can be used.
Herea > 0 is a constant that you adjust to improve the convergence.

5. A common situation in practice is thaf (¢, s) is singular along the diagonal line
t = s. Here the Nystrom method fails completely because the kernel gets evaluéted;at
Subtraction of the singularity is one possible cure:

ST [e9 10

/ K(t,5)f(s)ds = / K(t5)[f(s) — f(£)]ds + / K(t,5) f(£) ds
a a a (18.3.2

b
= [ K91 - f@)ds +r(0)50)
wherer(t) = [: K(t,s)ds is computed analytically or numerically. If the first term on

the right-hand side is now regular, we can use the Nystrom method. Instead of equatio
(18.1.4), we get
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Fi= XY wiKylfs = £+ Arifi + i (18.3.3
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Sometimesthe subtraction process must be repeated before the kernelis completely regulariz
Seel3] for details. (And read on for a different, we think better, way to handle diagonal
singularities.)

Quadrature on a Uniform Mesh with Arbitrary Weight

It is possible in general to fine-point linear quadrature rules that approximate the
integral of a functionf(x), times an arbitrary weight functiom(x), over an arbitrary range
of integration(a, b), as the sum of weights timesevenly spaced values of the functigt),
say atc = kh, (k+1)h, ..., (k+n —1)h. The general scheme for deriving such quadrature
rules is to write down the: linear equations that must be satisfied if the quadrature rule is
to be exact for the: functions f(x) = constz,z?,...,2" "', and then solve these for the
coefficients. This can be done analytically, once and for all, if the moments of the weight
function over the same range of integration,
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Wn = % z"w(z)dx (18.3.4
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790 Chapter 18.  Integral Equations and Inverse Theory

are assumed to be known. Here the prefaétof is chosen to makéV,, scale ash if (as
in the usual case) — a is proportional toh.
Carrying out this prescription for the four-point case gives the result

/ () ) =

éf(kh) [(k + 1)(k 4+ 2)(k + 3)Wo — (3k? + 12k + 1)W1 4 3(k + 2)Wa — Wg}
+ éf([k + 3]h) { — k(k +1)(k +2)Wo + (3k* + 6k + 2)W1 — 3(k + 1)W2 + W3}

(18.3.5
While the terms in brackets superficially appear to scale’athere is typically cancellation
at both O(k?) and O(k).

Equation (18.3.5) can be specialized to various choicgzdf). The obvious choice
isa = kh, b = (k + 3)h, in which case we get a four-point quadrature rule that generalizes
Simpson’s 3/8 rule (equation 4.1.5). In fact, we can recover this special case by settin
w(z) = 1, in which case (18.3.4) becomes

_ h n+1 _ n+1
W, = ——l [(k+3) E"T (18.3.9

The four terms in square brackets equation (18.3.5) each become independenanaf
(18.3.5) in fact reduces to

1
+2f(k+1 — k(k +2)(k + 3)Wo + (3k% + 10k 4 6)W; — (3k+5)W2+W3}

+;f(k+2 k(k+1)(k+3 Wo—(3k2+8k+3)W1+(3k+4)Wg—W3}

(k+3)h
[ e = ) S 100+ (ke 2+ 5 F () (1837
Back to the case of generai(x), some other choices far andb are also useful. For
example, we may want to choo$e, b) to be ([k + 1]k, [k + 3]h) or ([k + 2]k, [k + 3]h),
allowing us to finish off an extended rule whose number of intervals is not a multiple
of three, without loss of accuracy: The integral will be estimated using the four values
f(kh), ..., f([k+ 3]h). Even more useful is to choo$e, b) to be([k + 1]h, [k + 2]h), thus
using four points to integrate a centered single interval. These weights, when sewed togeth
into an extended formula, give quadrature schemes that have smooth coefficients, i.e., witho
the Simpson-like, 4, 2, 4, 2 alternation. (In fact, this was the technique that we used to derlv
equation 4.1.14, Which you may now wish to reexamine.)

All these rules are of the same order as the extended Simpson’s rule, that is, exa
for f(z) a cubic polynomial. Rules of lower order, if desired, are similarly obtained. The
three point formula is

SN0108IP 0] [rewWa puas 1o ‘(Ajuo eauswy YLUoNFEZYy/-2/8-008-T 1182 10 Wod ummmy/:dny
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/bw(x)f(x)d:c - %f(kh) {(k ) (k4 2)Wo — (2k + 3)W1 + Wz}

+ f([k + 1]h) { — k(k +2)Wo + 20k + D)W, — Wz} (18.3.8
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+ %f([k +2]h) {k’(k + 1)Wo — (2k + 1)W1 + W%

Here the simple special case is to tak€xz) = 1, so that

W, = il [(k+2)"T" — k™ (18.3.9

Then equation (18.3.8) becomes Simpson’s rule,

(k+2)h
[ S = S + S ) + (k20 (18:3.19

:h
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18.3 Integral Equations with Singular Kernels 791

For nonconstant weight functions(x), however, equation (18.3.8) gives rules of one order
less than Simpson, since they do not benefit from the extra symmetry of the constant case.

The two point formula is simply

[ @@ = RIG OWo Wil £+ IR+ W] (183,19
Jkh

Here is a routinerwghts that uses the above formulas to return an extendlepoint

quadrature rule for the intervgh, b) = (0, [N — 1]h). Input towwghts is a user-supplied

routine kermom, that is called to get the first foumdefinite-integral moments otv(z), namely

y
Fn(y) = / s™w(s)ds m=0,1,2,3 (18.3.12

(The lower limit is arbitrary and can be chosen for convenience.) Cautionary note: Whe
called with N < 4, wwghts returns a rule of lower order than Simpson; you should structure

your problem to avoid this.

SUBROUTINE wwghts(wghts,n,h,kermom)

INTEGER n

REAL wghts(n),h

EXTERNAL kermom

USES ker nom
Constructs in wghts(1:n) weights for the n-point equal-interval quadrature from 0 to
(n—1)h of a function f(z) times an arbitrary (possibly singular) weight function w(z) whose
indefinite-integral moments F,(y) are provided by the user-supplied subroutine kermom.

INTEGER j,k
DOUBLE PRECISION wold(4),wnew(4),w(4),hh,hi,c,fac,a,b
hh=h Double precision on internal calculations even though
hi=1.40/hh the interface is in single precision.
do11 j=1,n Zero all the weights so we can sum into them.
wghts (j)=0.
enddo 11
call kermom(wold,0.d0,4) Evaluate indefinite integrals at lower end.
if (n.ge.4) then Use highest available order.
b=0.d0 For another problem, you might change this lower
do 14 j=1,n-3 limit.
c=j-1 This is called k in equation (18.3.5).
a=b Set upper and lower limits for this step.
b=athh

if (j.eq.n-3) b=(n-1)*hh  Last interval: go all the way to end.

call kermom(wnew,b,4)

fac=1.d0

do 12 k=1,4 Equation (18.3.4).

w(k)=(wnew(k)-wold(k))x*fac
fac=fac*hi

enddo 12

wghts (j)=wghts (j)+ Equation (18.3.5).
((c+1.d0)*(c+2.d0) *(c+3.d0) *w(1)
-(11.d0+c*(12.d0+c*3.d0) ) *w(2)
+3.d0*(c+2.d0) *w(3)-w(4))/6.4d0

wghts (j+1)=wghts (j+1)+
(-c*(c+2.d0) *(c+3.d0) *w(1)
+(6.d0+c*(10.d0+c*3.4d0) ) *w(2)
-(3.d0*c+5.d0) *w (3)+w(4))*.5d0

wghts (j+2)=wghts (j+2)+
(c*(c+1.d0) *(c+3.d0) *w (1)
-(3.d0+c*(8.d0+c*3.d0) ) *w(2)
+(3.d0*c+4.d0) *w(3)-w(4))*.5d0

wghts (j+3) =wghts (j+3)+
(—c*x(c+1.d0)* (c+2.d0) *w (1)
+(2.d0+c*(6.d0+c*3.d0) ) *w(2)
-3.d0*(c+1.d0)*w(3)+w(4))/6.d0

do 13 k=1,4 Reset lower limits for moments.
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792 Chapter 18.  Integral Equations and Inverse Theory

wold(k)=wnew (k)
enddo 13
enddo 14
else if (n.eq.3) then Lower-order cases; not recommended.
call kermom(wnew,hh+hh,3)
w(1)=wnew(1)-wold (1)
w(2)=hi*(wnew(2)-wold(2))
w(3)=hi**2* (wnew(3)-wold(3))
wghts (1)=w(1)-1.5d0*w(2)+0.5d0*w(3)
wghts (2)=2.d0*w(2)-w(3)
wghts (3)=0.5d0* (w(3)-w(2))
else if (n.eq.2) then
call kermom(wnew,hh,2)
wghts (2)=hi* (wnew(2)-wold(2))
wghts (1) =wnew (1) -wold (1) -wghts(2)
endif
END

We will now give an example of how to appiwghts to a singular integral equation.

Worked Example: A Diagonally Singular Kernel

As a particular example, consider the integral equation

‘(Aluo eouBWY YUON) £21/-2/8-008-T |[€2 JO Wod Ju mmm//:dny

flx) + / K(z,y)f(y)dy = sinx (18.3.13
JO
with the (arbitrarily chosen) nasty kernel
— —ln(z—-y) y<z
K(z,y) = cosz cosy X { Ji—% SN (18.3.14

—

p 01 |rewa puss 1o

which has a logarithmic singularity on the left of the diagonal, combined with a square-roo
discontinuity on the right.

The first step is to do (analytically, in this case) the required moment integrals over
the singular part of the kernel, equation (18.3.12). Since these integrals are done at a fix
value of z, we can user as the lower limit. For any specified value 9f the required
indefinite integral is then either

)]

Yy "Yy—x
Fm(y;m):/ sm(s—x)l/st:/ @+ 0™ 24t fy>z (18319
T JO
or

y z—y
Fo(y;z) = —/ s" In(z — s)ds = / (x—t)" Intdt ify<z (18.3.19
T 0

(where a change of variable has been made in the second equality in each case). Doing th
integrals analytically (actually, we used a symbolic integration package!), we package thes
resulting formulas in the following routine. Note thatj + 1) returnsF; (y; ).

SUBROUTINE kermom(w,y,m)
Returns in w(1:m) the first m indefinite-integral moments of one row of the singular part
of the kernel. (For this example, m is hard-wired to be 4.) The input variable y labels the
column, while x (in COMMON) is the row.
INTEGER m
DOUBLE PRECISION w(m),y,x,d,df,clog,x2,x3,x4
COMMON /momcom/ x
We can take x as the lower limit of integration. Thus, we return the moment integrals either
purely to the left or purely to the right of the diagonal.
if (y.ge.x) then
d=y-x
df=2.d0*sqrt (d) *d
w(1)=4a£f/3.40
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18.3 Integral Equations with Singular Kernels 793

w(2)=df*(x/3.d40+d/5.40)
w(3)=df*((x/3.d0 + 0.4d0*d)*x + d**2/7.d0)
w(4)=df*(((x/3.d0 + 0.6d0*d)*x + 3.d0xd**2/7.d0)*x
+ d**3/9.d0)
else
X2=X%%2
x3=x2%x
X4=x2*x2
d=x-y
clog=log(d)
w(1)=d*(clog-1.d0)
w(2)=-0.25d0%*(3.d0*x+y-2.d0*clog* (x+y) ) *d
w(3)=(-11.d0*x3+y*(6.d0*x2+y* (3.d0*x+2.d0*y))
+6.d0*clog* (x3-y**3))/18.d0
w(4)=(-25.d0*x4+y* (12.d0*x3+y* (6.d0*x2+y*
(4.d0*x+3.d0*y)))+12.d0*clog* (x4-y**4)) /48.d0
endif
return
END

Next, we write a routine that constructs the quadrature matrix.

SUBROUTINE quadmx(a,n,np)

INTEGER n,np,NMAX

REAL a(np,np),PI

DOUBLE PRECISION xx

PARAMETER (PI=3.14159265,NMAX=257)

COMMON /momcom/ xx

EXTERNAL kermom

USES wwght s, ker nrbom
Constructs in a(1:n,1:n) the quadrature matrix for an example Fredholm equation of the
second kind. The nonsingular part of the kernel is computed within this routine, while the
quadrature weights which integrate the singular part of the kernel are obtained via calls
to wwghts. An external routine kermom, which supplies indefinite-integral moments of the
singular part of the kernel, is passed to wwghts.

INTEGER j,k
REAL h,wt(NMAX),x,cx,y
h=PI/(n-1)
do12 j=1,n
x=(j-1)*h
XX=X Put x in COMMON for use by kermom.
call wwghts(wt,n,h,kermom)
cx=cos (x) Part of nonsingular kernel.
do 11 k=1,n
y=(k-1)*h
a(j,k)=wt (k) *cx*cos(y) Put together all the pieces of the kernel.
enddo 11
a(j,j)=a(j,j)+1. Since equation of the second kind, there is diagonal
enddo 12 piece independent of h.
return
END

Finally, we solve the linear system for any particular right-hand side, diare.

PROGRAM fredex

INTEGER NMAX

REAL PI

PARAMETER (NMAX=100,PI=3.14159265)
INTEGER indx(NMAX),j,n

REAL a(NMAX,NMAX),g(NMAX),x,d
USES quadnx, | udcnp, | ubksb
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794 Chapter 18.  Integral Equations and Inverse Theory
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Figure 18.3.1. Solution of the example integral equation (18.3.14) with grid sizes N = 10, 20, and 40.
The tabulated solution values have been connected by straight lines; in practice one would interpolate
a small N solution more smoothly.

This sample program shows how to solve a Fredholm equation of the second kind using
the product Nystrom method and a quadrature rule especially constructed for a particular,
singular, kernel.

n=40 Here the size of the grid is specified.

call quadmx(a,n,NMAX) Make the quadrature matrix; all the action is here.
call ludcmp(a,n,NMAX,indx,d) Decompose the matrix.

do1 j=1,n Construct the right hand side, here sinx.

x=(j-1)*PI/(n-1)
g(j)=sin(x)

enddo 11
call lubksb(a,n,NMAX,indx,g) Backsubstitute.
do 12 j=1,n Write out the solution.

x=(j-1)*PI/(n-1)

write (x,*) j,x,g(j)
enddo 12
write (*,*) ’normal completion’
END

With N = 40, this program gives accuracy at about the 1075 level. The accuracy
increases as N* (as it should for our Simpson-order quadrature scheme) despite the highly
singular kernel. Figure 18.3.1 shows the solution obtained, also plotting the solution for
smaller values of N, which are themselves seen to be remarkably faithful. Notice that the
solution is smooth, even though the kernel is singular, a common occurrence.
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18.4 Inverse Problems and the Use of A Priori
Information

Later discussion will be facilitated by some preliminary mention of a couple
of mathematical points. Suppose that u is an “unknown” vector that we plan to
determine by some minimization principle. Let A[u] > 0 and B[u] > 0 be two
positive functionals of u, so that we can try to determine u by either

minimize:  A[u] or minimize:  B[u] (18.4.1)

(Of course these will generally give different answersfor u.) As another possibility,
now suppose that we want to minimize A[u] subject to the constraint that B[u] have
some particular value, say b. The method of Lagrange multipliers givesthe variation

(;iu {AU] + M (BJu] = b)} = (;iu (AJu] +\BJu]) =0 (18.4.2)
where \; is a Lagrange multiplier. Notice that b is absent in the second equality,
since it doesn't depend on u.

Next, suppose that we change our minds and decide to minimize B[u] subject
to the constraint that .A[u] have a particular value, a. Instead of equation (18.4.2)
we have

% {BJu] + X2(Au] —a)} = % (B[u] + A2 AJu]) =0 (18.4.3)
with, this time, A, the Lagrange multiplier. Multiplying equation (18.4.3) by the
constant 1/)\,, and identifying 1/Ao with A\, we see that the actual variations are
exactly the same in the two cases. Both cases will yield the same one-parameter
family of solutions, say, u(\1). As \; varies from 0 to oo, the solution u(\;)
varies along a so-called trade-off curve between the problem of minimizing .A and
the problem of minimizing B. Any solution along this curve can equally well
be thought of as either (i) a minimization of A for some constrained value of 5,
or (ii) a minimization of B for some constrained value of A, or (iii) a weighted
minimization of the sum A + \{B.

The second preliminary point hasto do with degenerate minimization principles.
In the example above, now suppose that A[u] has the particular form

Alul = |A-u—c? (18.4.4)

for some matrix A and vector c. If A hasfewer rows than columns, or if A is square
but degenerate (has a nontrivial nullspace, see §2.6, especially Figure 2.6.1), then
minimizing .4[u] will not give a unique solution for u. (To see why, review §15.4,
and note that for a “design matrix” A with fewer rows than columns, the matrix
AT . A in the normal equations 15.4.10 is degenerate.) However, if we add any
multiple \ times a nondegenerate quadratic form B[u], for exampleu - H - u with H
a positive definite matrix, then minimization of AJu] + AB[u] will lead to a unique
solution for u. (The sum of two quadratic formsis itself a quadratic form, with the
second piece guaranteeing nondegeneracy.)
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